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Abstract—The reaction of samarium diiodide with some cyclic and acyclic ketones tethering acyloxyalkyl side chains produced 2-
hydroxy cyclic hemiacetals in moderate to good yields, in which an intramolecular addition of samarium ketyl radicals to distant
ester carbonyls would be involved.
� 2006 Elsevier Ltd. All rights reserved.
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Scheme 1.
Samarium diiodide (SmI2)1-promoted intramolecular
coupling reactions of ketone carbonyls with other func-
tional groups to produce various carbocycles and het-
erocycles.2 Although there have been several examples
of intramolecular ketone–ester coupling reactions under
various electron transfer conditions,3 the reaction of
keto ester substrates using SmI2 as a reductant has been
less explored.4 In these examples, a common structure in
the substrates is an alkoxycarbonyl-substituted ketone
(X = CH2, Y = OR2 in Scheme 1, named Type I) and
it was commonly proposed that an intramolecular addi-
tion of either ketyl radicals or ketyl-derived carbanions
to distant ester carbonyls followed by the release of
alkoxy anions would occur to produce 2-hydroxy cyclic
ketones (path a).

Recently, we discovered novel examples of SmI2-pro-
moted intramolecular ketone–ester coupling of certain
types of cyclic keto esters, also categorized in Type I,
and the following rearrangements giving ring-expansion
products.5 On the other hand, the SmI2 reductions of ke-
tones tethering acyloxyalkyl side chains (X = O, Y = R2

in Scheme 1, named Type II) are unprecedented.6 There-
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fore, it should be interesting to investigate the SmI2-pro-
moted intramolecular ketone–ester coupling reaction of
such substrates, and to find out whether the expected
cyclic intermediates undergo a carbon–oxygen bond
cleavage to give dihydroxy ketones (path b), or are pro-
tonated to give cyclized products (path c). In this paper,
we will report our preliminary results and discussion on
the reactions of some aromatic ketones tethering acyl-
oxyalkyl side chains with SmI2, in which the expected
intramolecular ketone–ester coupling did occur to pro-
duce 2-hydroxy cyclic hemiacetals in moderate to good
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yields. The representative keto ester substrates and
products are shown in Chart 1.

We first examined the reaction of cyclic keto esters 1
with SmI2, and the results are summarized in Table 1.7

Regardless of the presence or absence of t-BuOH, cyclic
hemiacetals 2 were obtained in moderate to good yields.
The stereochemistry of 1,2-dihydroxy groupings in 2
was assigned as the cis-configuration, which is consistent
with the observation that the treatment of 2a with
dimethyl carbonate gave cyclic carbonate 4a.8,9 Interest-
ingly, when the reaction solution of 1a and SmI2 in the
absence of t-BuOH was worked-up after 24 h, dihy-
droxy tetralone derivative 5a was isolated (48%) instead
of 2a.10 It should be also noted that the addition of an
excess amount of t-BuOH (20 equiv) still produced 2a
as a major product (entry 3), while a large excess of
t-BuOH (100 equiv) decreased the yield of 2a and re-
sulted in the formation of alcohol 3a (10%) (entry 4).
On the other hand, the addition of MeOH (20 equiv)
completely suppressed the formation of 2a and gave 3a
in a low yield (14%). Substituent R of the ester moiety
in 1 was found to influence the reaction progress. For
example, the yield of 2c from phenyl ester 1c was better
than that of 2a (compare entry 7 to entry 1), and the
yield of 2d from formyl ester 1d was significantly
Table 1. SmI2 reductions of keto-ester 1

Entry 1 R m n t-BuOH
(equiv vs 1)

Conv of 1

(%)
Yield of 2

(%)

1 1a Me 1 1 0 100 52
2 1a Me 1 1 2 100 64
3 1a Me 1 1 20 95 57
4 1a Me 1 1 100 83 30
5 1b Me 2 1 0 100 63
6 1b Me 2 1 2 100 44
7 1c Ph 1 1 0 100 61
8 1c Ph 1 1 2 90 52
9 1d H 1 1 0 100 77

10 1d H 1 1 2 100 82
11 1e H 1 2 0 100 65
12 1e H 1 2 2 100 62
increased (compare entry 9 to entry 1). This tendency
was also observed in the reactions of other substrates.
For example, the reaction of 1e produced six-membered
cyclic hemiacetal 2e (entry 11); however, the reaction of
the corresponding methyl ester (R = Me, m = 1, n = 2,
not shown) produced a rather complex mixture in which
the expected cyclic product did not exist. Also, in the
reactions of acyclic keto ester substrates 6 with SmI2,
methyl ester 6a (R = Me, n = 1) afforded a complex
mixture from which no 7a was isolated, and, however,
formyl esters 6b (R = H, n = 1) and 6c (R = H, n = 2)
gave 7b (40%) and 7c (40%), respectively.

On the basis of the above results and our related stud-
ies,5 a plausible reaction mechanism for the reaction of
1 with SmI2 is proposed in Scheme 2. The single electron
transfer from SmI2 to ketone carbonyl of 1 gives samar-
ium ketyl radical 8, which undergoes intramolecular
addition to ester carbonyl. The chelation interaction be-
tween the samarium center coordinated with ketyl and
ester carbonyl in 8 would be expected similarly to other
related cases,11 which is consistent with the cis-diol
structures of 2 described above. The formed oxy radical
9 is reduced by another equivalent of SmI2 to give cyclic
dialkoxide 10, which is protonated to give 2. If 8 is inter-
cepted by a proton donor, the protonated ketyl 11 is
formed. Then, 11 is reduced by SmI2 and subsequently
protonated to give 3.12 This sequence is a well-recog-
nized process for the SmI2-promoted conversion of
ketones to alcohols in the presence of proton donors.1,2

Therefore, it was rather surprising to find that 2 was still
obtained in the presence of t-BuOH (100 equiv). Among
the possible rationalizations would be that this intra-
molecular ketyl–ester coupling competitively proceeds
to protonation of ketyl. Therefore, choosing a suitable,
appropriately acidic, proton donor and adjusting its
quantity to be added are important to obtain cyclic
hemiacetals.
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It should be also necessary to rationalize the formation
of 5a. A plausible mechanism is proposed in Scheme 3.
The existing Lewis acidic samarium ion(III) perhaps cat-
alyzes this rearrangement. Namely, the opening of the
tetrahydrofuran ring in 13a proceeds to give tertiary
carbocation 14a. Following 1,2-carbon shift13 in 14a
produces benzyl cation 15a, which is converted to 16a.
The fact that the corresponding rearrangement products
5b–d were not obtained or were obtained in quite low
yields clearly suggests that these cationic rearrangements
would be sensitive to the nature of the substituent (R)
and the size of the fused ring.14

In order to investigate the influence of the structure of
the ester moieties, we briefly conducted reactions of d-
keto esters 17 as well as keto carbonates 23, which have
not been previously subjected to SmI2 reduction (Chart
2).4,5 In the reaction of 17a (m = 1) with SmI2, 18a
(39%) along with 19a (9%) were obtained. The produc-
tion of 19a must be rationalized by the assumption that
the initially formed 18a is further reduced by SmI2. In
fact, when 18a was treated with SmI2, 19a was obtained
in a good yield (79%). A plausible reaction pathway for
this transformation, which is related to SmI2-promoted
reduction of a-heterosubstituted ketones,15 is presented
in Scheme 4. Again notably, the addition of t-BuOH
(2 equiv) did not suppress ketone–ester coupling but sig-
nificantly increased the yield of 19a (32%) without the
isolation of 18a. In the reaction of 17b (m = 2), 18b
and 19b were isolated in 48% and 17% yields, respec-
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tively, while only 19b (38%) was obtained upon the addi-
tion of t-BuOH. On the other hand, SmI2 reduction of
23a (m = 1) produced 2-hydroxy c-lactone 24a (56%)
while the addition of t-BuOH (2 equiv) did not greatly
affect the yield of 24a (66%). Moreover, the reaction of
23b (m = 2) with SmI2 produced 24b in an excellent yield
(96%).

In conclusion, we have first demonstrated that the
reactions of some cyclic and acyclic ketones tethering
acyloxyalkyl side chains with SmI2 promote novel intra-
molecular addition of samarium ketyl radicals to ester
carbonyls, and thus provide a new entry to synthesize
2-hydroxy cyclic hemiacetals, which are structurally
related to bioactive natural products.16 Also, some keto
carboxylates as well as keto carbonates were found to
undergo SmI2-promoted intramolecular ketone–ester
coupling reactions.
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